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A B S T R A C T   

Precision application of specific herbicides to susceptible weeds can significantly save herbicide. This is the first 
study evaluating the performances of precision sprayer for weed control in turf based on the herbicide weed 
control spectrum in field conditions. The results showed that EfficientNet-v2 and ResNet never fall below 0.992 
for discriminating and detecting the grid cells encompassing weeds susceptible to ACCase-inhibiting and syn
thetic auxin herbicides. MCPA, a synthetic auxin herbicide, is used to evaluate the performance of the developed 
smart sprayer for precision control of broadleaf weeds in dormant bermudagrass turf. The developed smart 
sprayer prototype detected and sprayed every grid cell containing broadleaf weeds in field experiments. 
Compared to the broadcast application, precision spraying of MCPA provided the same level of control of 
broadleaf weeds. By 18 days after treatment (DAT), the nontreated control had 13 weeds no. m− 2, while the plots 
that received broadcast and precision spraying had 0 and 1 broadleaf weed plant no. m− 2, respectively. Precision 
herbicide application according to the herbicide weed control spectrum (HWCS) with the developed smart 
sprayer provided the same level of broadleaf weed control and could save more herbicides compared to an 
approach without discriminating weed species. Overall, these findings clearly indicated that the developed smart 
sprayer prototype could effectively detect, discriminate, and spray herbicides onto the grid cells containing target 
weeds based on the HWCS.   

1. Introduction 

Controlling weeds is one of the most noteworthy challenges for turf 
management. Weeds compete with turfgrass for sunlight, nutrients, and 
moisture and could disrupt turf aesthetics and functionality if uncon
trolled (Hamuda et al., 2016; Liu and Bruch, 2020; McElroy and Martins, 
2013). A common practice of weed control in turf is to broadcast-apply 
herbicides over the entire turf area, although weeds are almost always 
present in non-uniform and patchy distributions (Farooq et al., 2019; Jin 
et al., 2022c). Excessive spraying herbicides may pollute the environ
ment (Pimentel and Burgess, 2014; Zhuang et al., 2023). For example, 
atrazine, a commonly used photosystem II inhibiting herbicide in 
warm-season turf, is frequently detected in underground water 

(Mahoney et al., 2015; McCullough et al., 2016). As a result, in the 
United States, Environmental Protection Agency recently proposed a 
series of measures, including prohibiting aerial applications, prohibiting 
application during rain, when soils are saturated or above field capacity, 
for all atrazine labels to reduce their chance of runoff from the treated 
fields (McCullough et al., 2015; Urian et al., 2015). The European Union 
actively encourages turf managers to employ spot-spraying to reduce the 
herbicide input (Busey, 2003; Marchand and Robin, 2019). Manual 
spot-spraying postemergence (POST) herbicides could reduce herbicide 
input, but it is impractical to be used in large turf fields (Fennimore and 
Cutulle, 2019). 

Computer vision technologies used in precision agriculture could be 
used to detect and localize weeds in turf (dos Santos Ferreira et al., 2017; 
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Fennimore et al., 2016). It can be integrated with a smart sprayer to 
facilitate precision herbicide application, thereby saving the herbicide 
usage required to control weeds (Nan et al., 2022; Zhang and Kovacs, 
2012). Traditional image processing techniques for discriminating and 
detecting weeds in arable crops relied on extracting visual characteris
tics such as color (Jin et al., 2021; Tang et al., 2016), shape (Perez et al., 
2000), or textural features (Bakhshipour et al., 2017). However, 
selecting and analyzing these features is challenging because crops and 
weeds could be very similar (Hasan et al., 2021; Jin et al., 2022d). 
Hyperspectral imaging has been investigated for weed detection, but its 
cost is substantially higher than employing a conventional digital im
aging camera (Jiang et al., 2020; Pantazi et al., 2016). Recently, deep 
learning methods, a subset branch of machine learning, have emerged as 
an incredible tool in image classification and object detection tasks (He 
et al., 2020; Shi et al., 2020). A growing number of research studies have 
investigated the use of deep learning in various scientific fields, such as 
natural language processing (Collobert and Weston, 2008; Collobert 
et al., 2011), speech recognition (Hinton et al., 2012; LeCun et al., 
2015), and computer vision (Shi et al., 2020; Yu et al., 2021). In agri
culture, deep learning methods are generally superior to traditional 
image processing methods due to their extraordinary feature learning 
capabilities (Jordan and Mitchell, 2015; Kamilaris and Prenafeta-Boldú, 
2018; Liakos et al., 2018). 

Several studies have investigated the performances of using deep 
convolutional neural networks for weed detection in turf (Hasan et al., 
2021; Jin et al., 2022b; Yu et al., 2019a). Yu et al. demonstrated that 
VGGNet is well-performed in classifying several broadleaf and grassy 
weeds in bermudagrass [Cynodon dactylon (L.) Pers.] turf, while 
DetectNet effectively recognized cutleaf evening-primrose (Oenothera 
laciniata Hill) in bahiagrass (Paspalum notatum Flugge) turf (Yu et al., 
2019b, 2019c, 2020). In another study, Medrano investigated You Only 
Look Once (YOLO), including YOLO-v4, YOLO-v4-tiny, and YOLO-v5, 
and reported that YOLO-v5 exhibited the highest mean average preci
sion (mAP) for detecting dandelion (Taraxacum officinale Web.) in ber
mudagrass turf (Medrano, 2021). Recently, Xie et al. reported the 
effectiveness of using an improved Mask R–CNN for detecting nutsedges 
(Cyperus spp.) growing in bermudagrass turf (Xie et al., 2021). 

Researchers have recently developed several smart sprayer pro
totypes (Lee et al., 1999; Slaughter et al., 2008). For example, Kargar 
et al. designed a smart sprayer for controlling weeds in corn (Zea mays 
L.). In this study, image segmentation and feature extraction were uti
lized to discriminate between corn plants and grassy weeds (Kargar and 
Shirzadifar, 2013). At that time, the lack of a robust machine vision 
system to detect and discriminate between crops and weeds was the 
primary limitation to the commercial development of smart sprayers 
(Utstumo et al., 2018). Recent advances in deep learning significantly 
improve weed detection accuracy, and new spraying technologies could 
considerably reduce the amount of herbicide input for weed control (Liu 
and Bruch, 2020). Calvert et al. developed a robotic spot-sprayer to 
manage harrisia cactus (Cereus martinii Labour.) in rangeland pastures. 
The authors used MobileNet-v2 neural network to detect harrisia cactus 
and achieved an average recall accuracy of 97.2% (Calvert et al., 2021). 
A few smart weeders such as See & Spray® (Blue River Technology, 
Sunnyvale, CA, USA) and Weed-it® (Rometron, Steenderen, 
Netherlands) have recently been commercialized with excellent per
formances for precision weed control. However, none of these smart 
sprayers are designed for precision herbicide application on turf (Yu 
et al., 2020). 

Effective weed classification based on the herbicide weed control 
spectrum (HWCS) enables the smart sprayer to apply herbicides only to 
the weeds susceptible to the herbicides (Jin et al., 2023). Regardless of 
recent success, none of the earlier research works designed and devel
oped smart sprayers for precision-spraying herbicides based on the 
HWCS. In the present research effort, a smart sprayer prototype was 
designed and developed for precision herbicide application on turf. The 
trained HWCS neural networks were used in the smart sprayer’s 

machine vision subsystem. Input images were cropped into multiple 
sub-images to generate grid cell maps. Grid cells containing the sus
ceptible weeds were detected and localized for precision herbicide 
spraying. The objectives of this research were to (1) design and develop 
a smart sprayer prototype that can be used to control weeds with a 
precision spraying technology, and (2) evaluate and compare the per
formances of the traditional broadcast and precision application based 
on the HWCS for controlling broadleaf weeds in dormant bermudagrass 
turf. 

2. Materials and methods 

2.1. Overview 

As shown in Fig. 1, the smart sprayer prototype includes a spraying 
boom with 10 solenoid valves and nozzles, an herbicide tank, a pump, a 
digital camera, and a computational unit for weed detection and local
ization. The sprayer prototype was controlled via embedded controllers 
with standard communication protocols. 

2.2. Smart sprayer hardware 

The smart sprayer prototype is powered by batteries and is designed 
to move intermittently (controlled manually via an Android applica
tion). The vehicle has two driving wheels at the front and was equipped 
with two brushless DC motors. 

A spraying boom was built to hold all the solenoid valves and spray 
nozzles (Fig. 2). The structure utilized was aluminum alloy, and the 
dimension was 106 cm in length, 36 cm in width, and 3 cm in height. 
The nozzles covered a spray length of 1 m behind the platform. The 
height of the boom could be adjusted in order to alter the distance be
tween the nozzles and the ground surface. Ten pairs of solenoid valves 
and nozzles (with a uniform space of 10 cm between two consecutive 
pairs) were mounted on the boom. Each nozzle covered a spray width of 
10 cm (Fig. 3). The nozzles were BBG-30 (BoyanLtd., Dongguan, 

Fig. 1. The main components of the smart sprayer prototype.  
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Guangdong, China) installed 18 cm above the ground surface at a spray 
angle of 30◦. 

The herbicide was stored in a 14 L plastic tank equipped with a 6 L 
min− 1 pump and at a constant 6 bar pressure (LS-1426, Leicheng Pump, 
Ningbo, Zhejiang, China). The solenoid valves (24 V, 2w025-08, Laize 
Inc., Wenzhou, Zhejiang, China) with <60 ms response time were used 
to control the nozzles. These hardware units were used to build a smart 
sprayer with a rapid response time and initiate precision spraying upon 
receiving trigger signals from the nozzle controllers. 

A digital camera (MER-503-36U3M/C, DaHeng Image, Inc., Beijing, 
China) was used for the image acquisition system. The camera was 
mounted on the vehicle at 1.2 m above the ground. An NVIDIA Jetson 
embedded graphical processing unit (GPU) processor (Nvidia Jetson 
TX2, Santa Clara, CA, USA) was chosen to process images acquired from 
the camera. The Jetson TX2 has a dual-core central processing unit 
(CPU) and a GPU including 256 compute unified device architecture 
(CUDA) cores, making it capable of performing image classification 
tasks. 

2.3. Smart sprayer software 

A custom software was established using Python programming lan
guage in order to create grid cell maps on the image and control nozzles 
to spray herbicides precisely onto the grid cells containing the target 
weeds. The overall workflow of the smart software system is shown in 
Fig. 4. The software can process the combined steps, including image 
capture, weed recognition and localization, nozzle control, and 
communication. 

2.3.1. Image acquisition 
Since the sprayer was moved intermittently, image acquisition was 

performed when the sprayer was stopped after moving a constant dis
tance. The developed software captures a resolution of 1920 × 1080 
pixels image from the most recent frame of the smart sprayer’s camera. 
The field-of-view (FOV) of the vision system covered a 0.80 × 0.45 m2 

area. Two regions of interest (ROIs) were cropped from the FOV of the 
vision system for detecting weeds inside the boom box (Fig. 5). Each ROI 
measured 0.80 m in length by 0.09 m in width based on the overlapping 
of the FOV of the vision system and the spraying boom in the developed 
smart sprayer. 

2.3.2. Weed detection and localization 
The developed software split each ROI into eight identical size grid 

cells (240 × 216 pixels sub-images), corresponding to eight nozzles on 
the boom. Although there were ten nozzles on the boom, eight nozzles 
were used due to the fact that the FOV of the vision system covered the 
second to the ninth nozzle. To achieve precision spraying, the sprayed 
area by a single nozzle was equivalent to or slightly larger compared to 
the physical size of each grid cell. Each grid cell denoted a size of 0.1 m 
× 0.09 m, which was approximately equal to the scope of the field zone 
where a single nozzle was covered (a circular area with a diameter of 
0.1 m). 

A custom software was developed with OpenCV-Python. The soft
ware was used to create grid cell maps on the input images. The trained 
HWCS neural networks were utilized to detect and locate the grid cells 

Fig. 2. Solenoid valves and spray nozzles.  

Fig. 3. Spray boom and nozzle arrangement.  

Fig. 4. The schematic diagram of designing the smart sprayer. Abbreviation: HWCS, herbicide weed control spectrum; ROI, region of interest.  

Fig. 5. Geometry location of regions of interest (ROIs) from the field-of-view 
(FOV) of the machine vision system. 
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containing weeds. The grid cells inside the ROI were identified and 
labeled as spraying zones if the inference indicated they contained 
weeds susceptible to herbicides. 

2.3.3. Convolutional neural networks and deep learning 
Three image classification neural networks, including EfficientNet- 

v2 (Tan and Le, 2019), ResNet (He et al., 2016), and VGGNet (Simon
yan and Zisserman, 2014) were trained according to the HWCS to 
recognize and classify weeds in dormant bermudagrass turf. EfficientNet 
utilizes the concept of compound scaling to homogeneously scale the 
width, depth, and resolution of the network with a set of fixed scaling 
coefficients. The scaling of dimensions is performed in a principled way 
(Tan and Le, 2019). As a residual learning method, ResNet employs an 
identity-based skip connection that could ease the information flow 
across units and improve accurateness from very deep networks. 
VGGNet is a classical convolutional neural network architecture 
composed of 16 wt layers. VGGNet exhibits smaller filters with more 
depth rather than large filters. EfficientNet-v2 is the state-of-the-art 
neural network, while ResNet and VGGNet are two of the most classic 
neural networks. These convolutional neural networks were evaluated 
for detecting and classifying if the grid cells (sub-images) had weeds 
susceptible to selective herbicides or merely included dormant bermu
dagrass turf without weeds. 

The training images of various weed species infesting dormant ber
mudagrass turf were primarily captured in February 2018 utilizing a 
digital camera (DSC-HX1, SONY®, Cyber-Shot Digital Still Camera, 
SONY Corporation, Minato, Tokyo, Japan) at the University of Georgia 
Griffin Campus in Griffin (UGA-Griffin), Georgia, the United States 
(33.26◦N, 84.28◦W). The training images primarily included annual 
bluegrass (Poa annua L.) and several broadleaf weed species, including 
common dandelion (Taraxacum officinale F.H. Wigg.), purple deadnettle 
(Lamium purpureum L.), henbit (Lamium amplexicaule L.), and white 
clover (Trifolium repens L.). The testing images of various weed species 
infesting dormant bermudagrass turf were captured in January 2022 
with a digital camera (MER-503-36U3M/C, DaHeng Image, Inc., Beijing, 
China) at Nanjing Forestry University (NFU), Nanjing, Jiangsu, China 
(32.08◦N, 118.82◦E). The testing images included annual bluegrass, 
common dandelion, and white clover. The cameras were configured to 
take RGB images at an original resolution of 1920 × 1080 pixels. During 
the image acquisition process, the cameras were set to automatic mode 
for focus, white balance, and exposure settings. The training and testing 
images were taken under varying illumination conditions, including 
sunny and cloudy days. 

When training convolutional neural networks for detecting the 
HWCS in dormant bermudagrass turf, all images were cropped into 40 
sub-images (8 columns by 5 rows) with Irfanview (v5.50, Irfan Skijan, 
Jajce, Bosnia). Each sub-image was 240 by 216 pixels. To establish the 
training dataset of the HWCS neural networks, 8000 sub-images (4000 
images for each class) including weeds susceptible to ACCase-inhibitors 
(grass weeds growing in dormant bermudagrass turf) or weeds suscep
tible to auxin herbicides (broadleaf weeds infesting dormant bermuda
grass turf) were arbitrarily chosen and utilized as the true positive 
images; and 4000 sub-images merely had dormant bermudagrass were 
arbitrarily chosen and utilized as the true negative images. 

To establish the HWCS neural networks’ validation or testing data
set, 1000 sub-images (500 images for each class) comprising grassy 
weeds (annual bluegrass) susceptible to ACCase-inhibitors or broadleaf 
weeds (common dandelion and white clover) susceptible to synthetic 
auxins were arbitrarily chosen and utilized as the true positive images; 
and 500 sub-images merely comprising dormant bermudagrass were 
randomly chosen and utilized as the true negative images. 

All neural networks were built and evaluated based on the PyTorch 
deep learning framework (version 1.8.1) using Python programming 
language (version 3.7.10). The training and testing of the neural net
works were performed on a Nvidia GeForce RTX 2080 Ti GPU with the 
CUDA toolkit 11.0. Default hyper-parameters were set for training the 

neural networks to ensure fair comparisons (Table 1). 
Precision, recall, and F1 score values were used as the matrices to 

evaluate the training and testing results of the HWCS neural networks 
and compare the performances against each other. These metrics were 
computed according to the confusion matrices consisting of four cate
gories: true positive (tp), false positive (fp), true negative (tn), and false 
negative (fn). 

Precision measures the ratio between the number of tp and the sum of 
tp and fp (Sokolova and Lapalme, 2009): 

precision =
tp

tp + fp (1) 

Recall is the true positive rate calculated by dividing tp with the sum 
of tp and fn (Sokolova and Lapalme, 2009): 

recall =
tp

tp + fn (2) 

The F1 score is one of the most widely used metrics for evaluating the 
overall performance of the neural networks. It was measured by using 
the following equation (Sokolova and Lapalme, 2009): 

F1 =
2 × precision × recall

precision + recall
(3)  

2.3.4. Nozzle control system 
After weed detection and localization, an array of 8 elements con

taining all the spraying decision flags (0 or 1) was sent to the nozzle 
controller for triggering the individual nozzles. A binary input command 
was used for turning off the spray nozzles over the non-target cells; thus, 
individual nozzles were independently controlled. The communication 
between the vision unit and the nozzle controller was carried out via a 
universal serial bus (USB) connection. For the nozzle controllers, a 
program was established to read and decode the serial data originating 
from the machine vision sub-system encompassing the grid cells to be 
sprayed. Finally, the control system sent a 5 V signal to trigger individual 
24 V solenoid valves, and then the corresponding nozzles started 
spraying. 

2.4. Weed control evaluation 

Field experiments were conducted from January 2022 to February 
2022 at two separate dormant bermudagrass turf fields on the campus of 
NFU to evaluate the precision control of broadleaf weeds with the 
developed smart sprayer prototype. MCPA (2-methyl-4-chlor
ophenoxyacetic acid, Taizhou Xianhe Ltd., Gong Ye Jizhong District, 
Xinghua City, Jiangsu, China), a synthetic auxin herbicide, was used to 
evaluate the performance of precision control of broadleaf weeds in 
dormant bermudagrass turf. MCPA at 1.5 kg a.e. ha− 1 was broadcast- 
applied using the smart sprayer prototype calibrated to deliver 400 L 
ha− 1 spray volume, while the same herbicide treatment solution was 
used for precision spraying treatment with the smart sprayer prototype. 

The experiments were carried out as a randomized complete block 
with four replications. A nontreated control in each replication was 
included. The plot measured approximately 3.6 × 4.0 m2 (0.9 m in width 
by 1.0 m in length for each replication). Survival weeds were recorded 0, 

Table 1 
The hyperparameters used for training the HWCS neural networks.  

Deep learning 
architecture 

Optimizer Base 
learning 
rate 

Learning 
rate policy 

Batch 
size 

Training 
epochs 

EfficientNet- 
v2 

SGD 0. 01 LambdaLR 16 60 

ResNet Adam 0.0001 StepLR 16 60 
VGGNet Adam 0. 0001 StepLR 16 60 

Abbreviation: SGD, stochastic gradient descent. 

X. Jin et al.                                                                                                                                                                                                                                       



Crop Protection 170 (2023) 106270

5

3, 7, 9, 11, 13, 15, and 18 days after treatment (DAT). Data were sub
jected to analysis of variance in SAS (version 9.4, SAS Institute, Cary, 
NC, United States). Data were examined for normality and constant 
variance prior to analysis. For the same rating timing, treatment means 
were compared with Fisher’s Protected LSD test at P = 0.05. 

3. Results 

3.1. Weed detection and localization 

No obvious differences were observed between EfficientNet-v2 and 
ResNet for identifying and classifying the grid cells comprising dormant 
bermudagrass only, and weeds susceptible to ACCase-inhibiting or 
synthetic auxin herbicides. 

EfficientNet-v2 and ResNet had an F1 score above 0.995 in the 
validation datasets for detecting and classifying weeds susceptible to 
ACCase-inhibitors and synthetic auxin herbicides (Table 2). For all 
neural networks, weed detection performance was slightly lower in the 
testing datasets than in the validation datasets. For detecting and clas
sifying weeds susceptible to ACCase-inhibitors and synthetic auxin 
herbicides, the F1 scores of VGGNet were 0.982 and 0.985 in the testing 
dataset. Therefore, by jointly analyzing the validation and testing re
sults, EfficientNet-v2 and ResNet demonstrated superiorities over 
VGGNet for detecting the HWCS. 

Fig. 6 represents the results when the custom software was used to 
crop the ROIs from the FOV of the vision system and detect the grid cells 
comprising weeds susceptible to synthetic auxin herbicides in dormant 
bermudagrass turf. A total of 8 grid cells, corresponding to 8 nozzles on 
the boom were split from each ROI. The trained HWCS neural network 
was used to detect weeds within the grid cells. A total of 2 and 3 out of 8 
grid cells were shown red (Fig. 6b and c) in ROI 1 and ROI 2, respec
tively, which represented they contained weeds susceptible to synthetic 
auxin herbicides; and a total of 6 and 5 grid cells indicated they only 
contained dormant bermudagrass in ROI 1 and ROI 2, respectively. In 
this case, nozzles 5 and 6 (from left to right) were turned on for spraying 
MCPA in ROI 1; while nozzles 4, 5, and 6 (from left to right) were turned 
on for spraying MCPA in ROI 2. 

It should be noted that when the grid cells contained both broadleaf 
and grassy weeds, the grid cells were labeled as spraying areas regard
less of the HWCS. As long as the grid cells comprised the broadleaf 
weeds, the nozzles were turned on, and the grid cells were sprayed with 
synthetic auxin herbicides. For instance, as shown in Fig. 6, nozzles 5 
and 6 (from left to right) in ROI 1 and nozzle 6 (from left to right) in ROI 
2 were turned on for spraying MCPA, although these grid cells contained 
grassy weeds as well. 

3.2. Weed control 

Experiments were conducted to compare broadcast and precision 

spraying using the developed smart sprayer prototype to control 
broadleaf weeds growing in dormant bermudagrass turf. On the day of 
herbicide treatments, weed densities in the plots of the nontreated 
control, precision, and broadcast treatments were 13, 11, and 9 weeds 
no. m− 2, respectively (Table 3). Throughout the experiment, broadcast 
treatment did not differ from precision spraying for reducing broadleaf 
weed densities. Broadcast and precision spraying of MCPA using the 
developed smart sprayer prototype significantly reduced broadleaf weed 
densities at 9 DAT and thereafter. By 18 DAT, the plots received 
broadcast, and precision spraying of MCPA with the smart sprayer 
prototype had 0 and 1 broadleaf weed no. m− 2, respectively. 

4. Discussion 

The machine vision system of a smart sprayer can employ either 
image classification or object detection neural networks (Zhuang et al., 
2021). The object detection neural networks enable the localization of 
target weeds by drawing bounding boxes around them. However, noz
zles generally generate a consistent size of spraying outputs on the 
ground surface, while the bounding boxes (size of each individual 
weeds) varies. Precision spraying herbicides for weed control requires 
the detection and localization of areas infested with weeds and is not 
necessary to detect and localize individual weed plants. Therefore, in the 
present study, grid cells with target weeds were identified and localized 
rather than detecting individual weed plants growing in turf. Precision 
herbicide application could be achieved with the proposed method as 
long as the smart sprayer’s machine vision subsystem could determine 
the absence or presence of the target weeds inside the grid cells. 

Identifying and classifying weed species according to their suscep
tibility to herbicides enables spraying specific herbicides for controlling 
susceptible weeds. In the present research, EfficientNet-v2 and ResNet 
achieved excellent F1 scores (≥0.996) in the validation and testing 
datasets to identify and classify the grid cells containing broadleaf weeds 
susceptible to MCPA. This finding suggests that creating maps of grid 
cell on the images and detecting the HWCS is promising to realize pre
cision weed control and can save more herbicides than an approach 
without discriminating weed species. 

MCPA, a synthetic auxin herbicide, controls various broadleaf weed 
species but exhibits limited herbicidal activity on grassy weeds (Shaner, 
2014). In the field experiments, MCPA was used to test the performances 
of the smart sprayer for precision control of broadleaf weeds in dormant 
bermudagrass turf. Our results showed that when the grid cells con
tained the broadleaf weeds, the smart sprayer precisely sprayed MCPA 
onto the broadleaf weeds. Following the herbicide application, precision 
spraying of MCPA did not differ from broadcast treatment for reducing 
weed densities, indicating the feasibility of using the developed smart 
sprayer for precision weed control based on the HWCS. 

It should be noted that when the testing images contained grassy 
weeds growing close to broadleaf weeds in dormant bermudagrass turf, 

Table 2 
The performances of the HWCS neural networks for identifying and classifying the grid cells comprising weeds susceptible to ACCase-inhibitors and synthetic auxin 
herbicides, or dormant bermudagrass without weed infestation (no herbicide).a  

Deep learning architecture Herbicides Validation dataset Testing dataset 

Precision Recall F1 score Precision Recall F1 score 

EfficientNet-v2 ACCase-inhibitors 0.998 0.994 0.996 0.992 0.996 0.994 
No herbicide 0.996 1.000 0.998 0.996 1.000 0.998 
Synthetic auxins 0.998 0.998 0.998 1.000 0.992 0.996 

ResNet ACCase-inhibitors 0.994 0.996 0.995 0.986 0.998 0.992 
No herbicide 0.996 0.998 0.997 0.998 0.994 0.996 
Synthetic auxins 0.998 0.994 0.996 1.000 0.992 0.996 

VGGNet ACCase-inhibitors 0.978 0.992 0.985 0.982 0.982 0.982 
No herbicide 0.996 0.996 0.996 0.994 0.996 0.995 
Synthetic auxins 0.996 0.982 0.989 0.986 0.984 0.985  

a The HWCS neural networks were trained to identify and classify the grid cells comprising weeds susceptible to ACCase-inhibitors, synthetic auxin herbicides, or 
dormant bermudagrass without weed infestation (no herbicide). Abbreviation: HWCS, herbicide weed control spectrum. 
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the neural networks did not effectively detect and discriminate the 
HWCS because the grid cell contained both broadleaf and grassy weeds. 
Nevertheless, the smart sprayer prototype detected every grid cell con
taining broadleaf weed plants or broadleaf weeds growing close to 
grassy weeds. As a result, the smart sprayer prototype sprayed MCPA 
onto the grid cells comprising grassy weeds as well when the grid cells 
contained both broadleaf and grassy weeds, as shown in Fig. 6. 

In a previous study, Jin et al. developed effective deep convolutional 
neural networks for identifying and classifying weed species in turf ac
cording to the HWCS (Jin et al., 2022a). The authors reported that 
ShuffleNet-v2 achieved high overall accuracy (≥0.999) in identifying 
and classifying weeds susceptible to ACCase-inhibiting herbicides or 
synthetic auxin herbicides. Most synthetic auxins are POST herbicides 
(e.g., 2,4-D or mecoprop) that can be used to control broadleaf weeds 
(Reed et al., 2013; Shaner, 2014; Yu and McCullough, 2016) with a few 
exceptions. For instance, triclopyr and quinclorac are both synthetic 
auxin herbicides. Triclopyr can suppress bermudagrass, while quin
clorac controls crabgrass as well as broadleaf weeds in bermudagrass 

turf (Grossmann and Kwiatkowski, 2000; Yu and McCullough, 2016). 
Thus, quinclorac should be used for precision control of broadleaf weeds 
with the developed smart sprayer prototype when the turf field is 
infested with crabgrass weeds. 

In the present study, only MCPA was used to evaluate the perfor
mance of the developed smart sprayer for precision control of broadleaf 
weeds in dormant bermudagrass turf. While the developed smart sprayer 
achieved an excellent performance of precision weed control, other 
POST broadleaf herbicides (e.g., carfentrazone) should be evaluated for 
precision herbicide application with the developed HWCS neural 
networks. 

5. Conclusions 

In summary, the present research investigated the feasibility of uti
lizing image classification convolutional neural networks to identify and 
classify weeds growing in dormant bermudagrass turf according to the 
HWCS. EfficientNet-v2 and ResNet exhibited superiorities over VGGNet 
for discriminating ACCase-inhibitors or synthetic auxin herbicides. The 
developed smart sprayer prototype effectively detected and sprayed 
MCPA onto the grid cells containing broadleaf weeds and resulted in the 
same level of weed control compared to the broadcast treatment. This is 
the first research seeking to develop smart sprayer for precision control 
of weeds according to the HWCS. Although the functionality as a whole 
has been verified, the developed smart sprayer prototype needs to be 
further optimized in order to realize precision herbicide application 
while moving. An additional study is required to examine the perfor
mances of precision weed control based on the HWCS using the devel
oped smart sprayer prototype in actively growing turfgrass fields. 
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Fig. 6. Weed detection and localization using the developed neural networks. The original image (1920 × 1080 pixels) was captured by vision system (a). The grid 
cells of ROI 1 and ROI 2 and the neural network inferred the grid cells (240 × 216 pixels) comprising broadleaf weeds (red) and bermudagrass turf only (b, c). 

Table 3 
Control of broadleaf weeds following broadcast and precision treatment of 
MCPA with the developed smart sprayer prototype.a   

Survived broadleaf weeds (no. m− 2)b 

Treatment 0 d 3 d 7 d 9 d 11 d 13 d 15 d 18 d 
Nontreated control 13 13 13 13 a 13 a 13 a 13 a 13 a 
Broadcast 

application 
9 9 7 5 b 4 b 3 b 1 b 0 b 

Precision spraying 11 11 10 7 b 5 b 4 b 2 b 1 b 
LSD0.05 4.0 4.0 4.1 3.7 2.9 2.6 2.4 2.2  

a Treatment means followed by the same letter are not statistically different 
based on Fisher’s Protected LSD test at the 0.05 probability level. 

b The number of survived broadleaf weeds was recorded on the day of her
bicide treatment and at 3, 7, 9, 11, 13, 15, and 18 days after herbicide treatment. 
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